Жизнь звезд


Жизнь звезд
По современным представлениям, первичное вещество во Вселенной, образовавшееся в "первые три минуты" после Большого Взрыва, примерно на три четверти состояло из водорода, на одну четверть из гелия и ничтожную примесь составляли дейтерий и литий. Только через несколько миллиардов лет из первичных возмущений стали конденсироваться галактики и звезды. Сейчас нет сомнения, что основная часть барионного вещества во Вселенной (то есть вещества, основную массу которого составляют протоны и нейтроны) сосредоточена именно в звездах.
Во что превращаются звезды в конце жизни?

По современным представлениям, первичное вещество во Вселенной, образовавшееся в "первые три минуты" после Большого Взрыва, примерно на три четверти состояло из водорода, на одну четверть из гелия и ничтожную примесь составляли дейтерий и литий. Только через несколько миллиардов лет из первичных возмущений стали конденсироваться галактики и звезды. Сейчас нет сомнения, что основная часть барионного вещества во Вселенной (то есть вещества, основную массу которого составляют протоны и нейтроны) сосредоточена именно в звездах.

Чтобы понять, во что превращаются звезды в конце жизни, следует сделать экскурс в наши представления о внутреннем строении звезд. По сути дела, любое устойчивое небесное тело представляет собой равновесную конфигурацию, в которой действие гравитации, стремящейся сжать вещество, уравновешено противодействием сил даления, возникающего в веществе при гравитационном сжатии. Физическая природа сил давления различается у разных небесных тел. Так, у большей части светящихся звезд это просто давление горячего идеального газа. У небольшой части самых массивных звезд определяющую роль начинает играть давление излучения (фотонного газа). Напротив, в очень плотных звездных остатках (белых карликах, нейтронных звездах), силам гравитации противостоит давление вырожденного вещества, которое вообще не зависит от температуры и определяется только плотностью. Рост плотности и температуры в сжимающемся облаке газа (протозвезде) происходит до начала термоядерных реакций горения водорода в гелий (например, в центре Солнца температура около 14 млн. Кельвинов и плотность более 100 г в кубическом см). Звезда при этом находится на так называемой "главной последовательности" диаграммы Герцшпрунга - Рессела (диаграмма цвет (или спектральный класс) - светимость). Замечательно, что дальнейшая судьба звезды определяется практически только ее массой.

Как долго звезда находится на главной последовательности? Ответить на этот вопрос совсем нетрудно, если знать механизм энерговыделения в звезде. Для звезд главной последовательности это термоядерные реакции, а значит, как известно из ядерной физики, на каждый грамм вещества выделяется около 0.1% энергии покоя. Стало быть полный запас термоядерной энергии в звезде есть просто 0.001M*c2, где M - масса ядра звезды, в котором условия пригодны для термоядерных реакций, а с - скорость света. Зная скорость потери энергии звездой (ее светимость) (для Солнца это 4*1026 Вт) и учтя наблюдательный факт, что светимость звезды в хорошем приближении пропорциональна по крайней мере кубу ее массы, получаем замечательное соотношение: (время превращения водорода в гелий = 10 млрд. лет/(масса звезды, выраженная в массах Солнца)2). Эта формула показывает, что звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд сотавляет "всего" несколько млн. лет! Но почему мы употребили термин "время жизни"? Ответ простой: все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% этого (так называемого ядерного) времени. Этим, кстати, объясняется наблюдательный факт, что большинство звезд в нашей Галактике - скромные красные звезды с массой Солнца или меньше, с характерным временем ядерной эволюции порядка возраста Вселенной (около 15 млрд. лет). Теперь мы подошли к основному вопросу - во что превращаются звезды в конце жизни и каковы наблюдательные проявления звездных остатков.

Как мы упомянули, масса звезды - главный параметр ее эволюции, поэтому уместно рассмотреть результаты эволюции звезды в зависимости от ее начальной массы. Как мы увидим, для звезд разной массы результаты эволюции кардинально различны. I. Белые карлики были открыты в 1914 г. американским астрономом Адамсом, который при анализе спектра слабого спутника Сируса (звезда Сириус В) обнаружил, что эта звезда имеет очень высокую температуру, близкую к температуре самого Сириуса. Адамс заключил, что поскольку светимость Сириуса В в 300 000 раз меньше светимости Сириуса, то при массе примерно равной солнечной он должен иметь "маленькие" по звездным меркам размеры - всего около 6000 км! В то время никто не мог понять откуда берутся такие звезды. Только после создания квантовой механики в начале 30-х годов была выяснена природа этих объектов. Теперь перейдем к современному представлению об образовании белых карликов.

Оценить Статью:  
1   2   3   4   5   6   7   8   9   10    

« Назад
SAPE все усложнил?

MainLink - простая и прибыльная продажа ссылок!

Последние поступления:

Размещена 10 августа 2020 года

Я по ТВ видел, что через 10 лет мы будем жить лучше, чем в Германии...
Я не понял, что это они с Германией сделать хотят?!

читать далее…

ТехЗадание на Землю

Размещена 14 марта 2018 года

Пpоект Genesis (из коpпоpативной пеpеписки)

читать далее…

Шпаргалка по работе с Vim

Размещена 05 декабря 2017 года

Vim довольно мощный редактор, но работа с ним не всегда наглядна.
Например если нужно отредактировать какой-то файл например при помощи crontab, без знания специфики работы с viv никак.

читать далее…

Ошибка: Error: Cannot find a valid baseurl for repo

Размещена 13 сентабря 2017 года

Если возникает ошибка на centos 5 вида
YumRepo Error: All mirror URLs are not using ftp, http[s] or file.
Eg. Invalid release/

читать далее…

Linux Optimization

Размещена 30 июля 2012 года

Prelink

читать далее…