Взрыв сверхновой


Взрыв сверхновой
Сверхновая - это настоящий взрыв зведы, когда большая часть ее массы (или даже вся) сбрасывается со скоростью до 10 тысяч км/с в пространство, а оставшаяся центральная часть схлопывается (коллапсирует) в сверхплотную нейтронную звезду или даже в черную дыру
Сверхновые звезды

Обратимся теперь к явлению сверхновой звезды - одному из самых грандиозных космических явлений. Коротко говоря, сверхновая - это настоящий взрыв зведы, когда большая часть ее массы (или даже вся) сбрасывается со скоростью до 10 тысяч км/с в пространство, а оставшаяся центральная часть схлопывается (коллапсирует) в сверхплотную нейтронную звезду или даже в черную дыру. Сверхновые играют фундаментальную роль в эволюци звезд, являясь "финалом" жизни звезд с массами более 8-10 солнечных масс, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами (практически все химические элементы тяжелее кислорода когда-то образовались при взрыве какой-нибудь массивной звезды.

Не в этом ли разгадка извечной тяги человечества к звездам? Ведь в мельчайшей кровинке живой материи есть атомы железа, каждый из которых был синтезирован при гибели массивной звезды, и в этом смысле люди сродни тому снеговику из сказки Г.-Х. Андерсена, который испытывал необъяснимую любовь к жаркой печке, потому что основой его была кочерга ... ). По своим наблюдаемым характеристикам сверхновые принято разделять на 2 широких класса - сверхновые 1го и 2-го типа.

В спетрах сверхновых 1-го типа нет линий водорода, зависимость их блеска от времени (т.н. кривая блеска) почти не меняется от сверхновой к сверхновой, светимость в максимуме блеска примерно одинакова. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весма разнообразны, блеск в максимуме сильно различается у разных сверхновых. Чтобы дополнить картину различий между этими типами сверхновых укажем, что только сверхновые 1-го типа вспыхивают в эллиптических галактиках (т.е. галактиках без спиральной структуры с пониженным темпом звездообразования, основной состав которых - маломассивные красные звезды), в то время как в спиральных галактиках (к числу которых принадлежит и наша галактика Млечный Путь) встречаются оба типа сверхновых, причем установлено, что сверхновые 2-го типа концентрируются к спиральным рукавам галактик, где идет активный процесс звездообразования и много молодых массивных звезд.

Эти феноменологические особенности наводят на мысль о различной природе двух типов сверхновых. Сейчас надежно установлено, что при взрыве любой сверхновой освобождается всегда примерно одно и то же (гигантское!) количество энергии 1053 эрг, что соответствует энергии связи образующегося компактного остатка (напомним, чтоэнергия связи звезды соответствует такому количеству энергии, которое нужно затратить, чтобы "распылить" вещество звезды на бесконечно удаленное расстояние). Основная энергия взрыва уносится не фотонами, а нейтрино - релятивисткой частицей с очень малой массой или вообще безмассовой (этот вопрос активно исследуется последние 10-20 лет на самых мощных ускорителях элементарных частиц), так как большая плотность звездных недр не позволяет фотонам свободно покидать звезду, а нейтрино чрезвычайно слабо взаимодействуют с веществом (как говорят, имеют очень малое сечение взаимодействия) и для них недра звезды вполне "прозрачны".

Окончательной самосогласванной теории взрыва сверхновых с образованием компактного остатка и сбросом внешней оболочки не существует ввиду крайней сложности учета всех физических процессов, происходящих при вспышке сверхновой. Однако все данные говорят о том, что сверхновые 2-го типа являются следствием коллапса ядра звезды, в котором происходило термоядерное горение сначала водорода в гелий, затем гелия в углерод и так далее до образования изотопов элементов "железного пика" - железа, кобальта и никеля, атомные ядра которых имеют максимальную энергию связи в расчете на одну частицу (ясно, что присоединение новых частиц к ядру, например, железа, будет требовать затрат энергии, а потому термоядерное горение и "останавливается" на элементах железного пика).

Что же заставляет центральные части массивной звезды терять устойчивость и коллапсировать как только железное ядро станет достаточно массивным (около 1.5 масс Солнца)?
В настоящее время известны два основных фактора, приводящие к коллапсу.
Во-первых, это "развал" ядер железа на 13 альфа-частиц (ядер гелия) с выделением фотонов (т.н. фотодиссоциация железа), и
во-вторых, захват электронов протонами с образованием нейтронов (т.н. нейтронизация вещества).
Оба процесса становятся возможными при больших плотностях (свыше 1 тонны в куб. см), устанавливающихся в центре звездных недр в конце эволюции, и оба они эффективно снижают "упругость" вещества, которая фактически и противостоит сдавливающему действию сил притяжения. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящее основную энергию, запасенную в коллапсирующем ядре. В отличие от процесса катастрофического коллапса ядра, разработанного достаточно детально, сброс оболочки звезд (собственно взрыв) не так-то просто получить. По-видимому, существенную роль в этом процессе играет нейтрино.

Как показывают расчеты, проведенные на суперкомпьютерах, плотность вблизи ядра настолько высока, что даже слабовзаимодействующее с веществом нейтрино оказывается на какое-то время "запертым" внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру и возникает ситуация, похожая на ту, которая получается при попытке налить более плотную жидкость, например, воду, поверх менее плотной (например, керосина или масла) - из опыта хорошо известно, что легкая жидкость стремится "всплыть" из-под тяжелой (в этом проявляется так называемая неустойчивость Рэлея-Тэйлора). Этот механизм приводит к возникновению гигантских конвективных движений и в конце концов импульс нейтрино передается вышележащей оболочке, которая сбрасывается в окружающее звезду пространство. Интересно отметить, что возможно именно эти нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой (иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество) - и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до тысячи км/с (столь большие пространственные скорости наблюдаются у молодых нейтронных звезд - радиопульсаров). Описанная схематическая картина взрыва сверхновой 2-го типа позволяет объяснить основные наблюдательные особенности этого грандиозного явления. Более того, теоретические предсказания этой модели (особенно касающиеся полной энергии и спектра нейтринной вспышки) оказались в отличном согласии с зарегистрированным нейтринным импульсом, пришедшим 23 февраля 1987 г. от сверхновой в Большом Магеллановом Облаке.

Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв произошел в звезде, лишенной водородной оболочки. Как сейчас полагают, это может быть звезда типа Вольфа-Райе (фактически это богатые гелием, углеродом и кислородом ядра звезд, у которых давление света "сдуло" верхнюю водородную оболочку, или же, если такая массивная звезда входила в состав тесной двойной системы, эта оболочка "перетекла" на соседнюю звезду под действием мощных приливных сил), у которой коллапсирует проэволюционировавшее ядро (т.н. сверхновые типа 1b), или взрывающийся белый карлик.

Как может взорваться белый карлик? Ведь это очень плотная звезда, в которой не идут ядерные реакции, а силам гравитации противостоит давление плотного газа, состоящего из электронов и ионов, которое вызвано существенно квантовыми свойствами электронов (т.н. вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звезд - уменьшение упругости вещества звезды при повышении ее плотности. Это опять же связано со "вдавливанием" электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами, которые мы здесь не будем рассматривать.

Как же можно повысить плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды может перетекать на белый карлик (вспомните случай новых звезд!), и при некоторых условиях масса (а значит и плотность) его будет постепенно возрастать, что в конечном счете и приведет к коллапсу и взрыву. Другой возможный вариант более экзотичен, но не менее реален - это столкновение двух белых карликов. Как такое возможно, спросит внимательный читатель, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, т.к. ничтожно число звезд в единице объема (от силы несколько звезд в 100-1000 парсеках). И здесь (в который уж раз!) "виноваты" оказываются двойные звезды, но теперь уже состоящие из двух белых карликов. Не вдаваясь в детали их образования и эволюции, заметим только, что, как следует из общей теории относительности А.Эйнштейна, две любые массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения - гравитационными волнами (например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы из-за этого эффекта, правда через колоссальное время, намного порядков превосходящее возраст Вселенной).

Оказывается, в случае двойных систем с массами звезд около солнечной (2*1030 кг) их "слияние" должно произойти за время меньшее возраста Вселенной (примерно 10 миллиардов лет).
Как показывают оценки, в типичной галактике такие двойные белые карлики могут сливаться раз в несколько сотен лет. Гигантская энергия, освобождаемая при этом катастрофическом процессе, вполне достаточна для объяснения явления Сверхновой типа 1а. Кстати, примерная одинаковость масс белых карликов делает все такие слияния "похожими" друг на друга, поэтому сверхновые типа 1а по своим характеристикам должны выглядеть одинаково вне зависимости когда и в какой галактике произошло это событие. Это свойство сверхновых типа 1а в настоящее время используется учеными для получения независимой оценки важнейшего космологического параметра - постоянной Хаббла, которая является количественной мерой скорости расширения Вселенной.

Мы рассказали лишь о наиболее грандиозных взрывах звезд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Мы отмечали выше, что в случае Сверхновых звезд основная энергия взрыва уносится нейтрино, а не светом, поэтому исследованеи неба методами нейтринной астрономии имеет интереснейшие перспективы и позволит в будущем "заглянуть" в самое "пекло" сверхновой, скрытое огромными толщами непрозрачного для света вещества.
Еще более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалеком будущем расскажет нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звезд и черных дыр.

Оценить Статью:  
1   2   3   4   5   6   7   8   9   10    

« Назад
SAPE все усложнил?

MainLink - простая и прибыльная продажа ссылок!

Последние поступления:

Размещена 10 августа 2020 года

Я по ТВ видел, что через 10 лет мы будем жить лучше, чем в Германии...
Я не понял, что это они с Германией сделать хотят?!

читать далее…

ТехЗадание на Землю

Размещена 14 марта 2018 года

Пpоект Genesis (из коpпоpативной пеpеписки)

читать далее…

Шпаргалка по работе с Vim

Размещена 05 декабря 2017 года

Vim довольно мощный редактор, но работа с ним не всегда наглядна.
Например если нужно отредактировать какой-то файл например при помощи crontab, без знания специфики работы с viv никак.

читать далее…

Ошибка: Error: Cannot find a valid baseurl for repo

Размещена 13 сентабря 2017 года

Если возникает ошибка на centos 5 вида
YumRepo Error: All mirror URLs are not using ftp, http[s] or file.
Eg. Invalid release/

читать далее…

Linux Optimization

Размещена 30 июля 2012 года

Prelink

читать далее…